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Abstract. The effect of basal solidification on viscous gravity currents is analysed using continuum models. A
Stefan condition for basal solidification is incorporated into the Navier-Stokes equations. A simplified version
of this model is determined in the lubrication and large-Bond-number limit. Asymptotic solutions are obtained
in three parameter régimes. (i) A similarity solution is possible in the following cases: the two-dimensional
problem when volume per unit length (V ) is proportional to time (t) raised to the power 7/4(V = qt7/4) and
the Julian number (ν3g2/q4) is large, where ν is kinematic viscosity, q is a constant of proportionality and g is the
acceleration due to gravity; the axisymmetric problem when volume is proportional to time raised to the power 3
(V = Qt3) and the dimensionless group νg/Q is large, where Q is a constant of proportionality. In both cases,
the front is found to depend on time raised to the power 5/4, as it does in the absence of solidification, but the
constant of proportionality satisfies a modified system of equations. (ii) In the case of large Stefan number and
small modified Peclet number (Peδ2 � 1, where Pe is the Peclet number and δ is the aspect ratio), asymptotic and
numerical methods are combined to produce the most revealing results. The temperature of the fluid approaches
the melting point over a short time-scale. Over the long time-scale, the solid/liquid interface is determined from
the conduction of latent heat into the solid. Strong coupling is observed with the basal solidification modifying the
flow at leading order. The solidification may retard and eventually arrest the front motion long before complete
phase change has taken place. (iii) In the case of constant volume and large modified Peclet number (Peδ2 � 1),
similarity solutions are found for the solidification at the base of the gravity current on the short time-scale. The
coupling is weak on this time-scale with the solidification being dependent on the front position but not influencing
the fluid motion at leading order. Over the long time-scale, the drop completely solidifies. Analytical solutions are
not obtained on this time-scale, but scalings are deduced.
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1. Introduction

The effect of basal solidification on the dynamics of the gravity current has not been ex-
tensively investigated. We begin by reviewing some related studies. The spreading of viscous
gravity currents without solidification has received a great deal of attention over several dec-
ades (see, for example, [1–3]). This is due to its relevance for geophysical flows and for nuclear
safety considerations. A limited number of articles have appeared which concern spreading
and basal solidification. An experimental study at low Bond number when the spreading is
driven by capillary action was described in [4]. The retarding and the arrest of the front was
observed in experiments performed at small Bond number. In an appendix of [3], a model
for spreading and basal solidification was stated. The thermal conduction time-scale was
assumed to be much smaller than the spreading and solidification time-scales; this simplifying
assumption is not required in this article. A similar study to the work described in this article at
large Bond number was presented by Bunk [5]. However, the latent heat and heat conduction
in the solid were not considered and we address these issues here. Bunk concludes that latent



360 Warren R. Smith

heat is of minor importance for large-Prandtl-number melts. We show that this conclusion is
only true on the short time-scale. The basal solidification of an inertia-dominated flow, which
recently arose in the study of laser percussion drilling (see [6]), has features in common with
the current application. Several of the developments made in this laser-drilling application are
incorporated here.

In this paper, the flow of a liquid melt between a gas and a solid base is considered. Our
attention is restricted to the problem where the solid and liquid are of the same material. The
volume of the solidified and liquid material may be constant or it may be permitted to increase
at a specified rate. We only consider the solidification of pure elements or compounds with
a single melting point. The liquid/gas interface and the solid/liquid interface are unknown
coupled moving boundaries. The front at which the solid, liquid and gas meet is also a mov-
ing boundary to be determined. In the following six paragraphs, we discuss the assumptions
concerning the solid, liquid and gas and their interfaces.

The solid is assumed to have the same thermal properties as the liquid. We model the
solid as infinitely thick in comparison to the thin liquid film (discussed below). The solid is
initially at a constant temperature lower than the liquid melting point, the far-field temperature
remaining at this constant value.

The liquid is an incompressible fluid of constant viscosity. We approximate the density of
the fluid to be the same (constant) value as the density of the solid. The modified Reynolds
number and aspect ratio are taken to be small so that lubrication theory may be applied to
simplify the Navier-Stokes equations. The equation for conservation of energy also greatly
simplifies in this limit.

The gas is considered to be relatively passive. The gas is assumed to be maintained at a
constant temperature which is lower than the liquid melting point. The gas, however, is a very
poor conductor and the Biot number is not permitted to be large. This assumption is consistent
with no solidification taking place at the liquid/gas interface.

Surface tension acts at the liquid/gas interface. Surface-tension effects are initially retained
in the fluid model. The singular limit of large Bond number is adopted and, at this stage,
surface-tension effects are neglected altogether. The liquid/gas interface may be oxidised,
which would justify the neglect of surface tension for certain fluids. In this way, we avoid
the specification of a contact-angle condition where solidification is taking place.

A Stefan condition is prescribed at the solid/liquid interface where solidification is expec-
ted to occur. Surface tension, undercooling and slip are ignored at the solid/liquid interface.

The propagation of two-dimensional and axisymmetric viscous gravity currents over a
horizontal surface is susceptible to a fingering instability (see, for example, [7]). There are
also stability issues related to the solid/liquid interface (see, for example, [8, Chapter 5]).
Morphological instability is associated with supercooling of the fluid which is not considered
here. In this article, we seek similarity solutions of the systems of partial differential equations;
the stability of these solutions to perturbations is not discussed.

The purpose of this paper is to gain a better understanding of the flow of viscous gravity
currents subject to thermal cooling and solidification. Mathematical models are introduced
which take basal solidification into account. The fluid flow is dependent on the resolidified
boundary through the geometry, this being a coupled moving-boundary problem. In the limit-
ing cases of these models, analytical solutions are obtained which provide valuable insight.

The contents of the paper is now outlined. Based on the above assumptions, a new math-
ematical model is introduced in Section 2 and non-dimensionalised, enabling the dominant
balances to be identified. The simplified two-dimensional and axisymmetric problems are
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Figure 2. Spreading and solidification of an axisymmet-
ric drop of water with B = 0,D � 1 and λf =
O(D1/2) at times t = 0 (top), t = 0·1 (middle) and
t = 0·2 (bottom). The liquid/gas and solid/liquid inter-
face are compared with the Barenblatt-Pattle similarity
solution without solidification. The interfaces are ob-
tained from the leading-order balance in (34) subject to
(41) and (51–52).

Figure 1. Planar representation of basal solidifica-
tion. The horizontal direction is denoted by x and the
vertical direction by z. The incompressible fluid is in
the region 0 < x < a(t) and η(x, t) < z < h(x, t),
and the solid is in the region z < η(x, t). The arrows
at x = 0 denote inflow.

Figure 3. Front location as a function of time for
the spreading of an axisymmentric drop of water
with and without basal solidification in the para-
meter régime B = 0, D � 1 and λf = O(D1/2).
The arrest of the front motion takes place at a dimen-
sionless time of t ≈ 0·2. The contact line is obtained
from the leading-order balance in (34) subject to (41)
and (51–52).

derived in Section 3, the small parameters being the square of the aspect ratio, the modified
Reynolds number and the reciprocal of the Bond number. The physical problem contains
coupled moving boundaries, however, in the asymptotic limit, this reduces to an explicit equa-
tion for the free fluid surface with only the thermal equation remaining as a field equation.
Section 4 describes three asymptotic solutions to the leading-order problem. In Section 5,
results are presented for the spreading and basal solidification of two common laboratory
solvents, namely water and glycerol. Finally, Section 6 gives a brief discussion of the results.

2. Problem formulation

2.1. TWO-DIMENSIONAL MODEL

2.1.1. Mathematical model
We consider an incompressible fluid contained in the horizontal direction by 0 < x < a(t) and
in the vertical direction by a bottom defined by z = η(x, t) and a top defined by z = h(x, t)
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as indicated in Figure 1, where x and z are the coordinates in the horizontal and vertical
directions and t is time. Solidified material is present in the region z < η(x, t). The initial-
boundary-value problem for the horizontal velocity u(x, z, t), vertical velocity w(x, z, t),
(q = (u,w)T ), pressure p(x, z, t), temperature T (x, z, t), the position of the front x = a(t),
the dynamic contact angle �(t), and unknown moving boundaries z = η(x, t) and z = h(x, t)

is

∇ · q = 0, ρ

[
∂q

∂t
+ (q · ∇)q

]
= −∇p + µ∇2q − ρgk for η(x, t) < z < h(x, t), (1)

ρc

[
∂T

∂t
+ (q · ∇)T

]
= k∇2T for η(x, t) < z < h(x, t), (2)

∂T

∂t
= k

ρc
∇2T for z < η(x, t), (3)

D

Dt
(z − h) = 0, n · τ · n = 2κσ, t · τ · n = 0 on z = h(x, t), (4)

γ (T − Ta) = −k∇T · ∇(z − h) on z = h(x, t), (5)

T = Tm, q · ∇(z − η) = 0, t · q = 0 on z = η(x, t), (6)

ρLf

∂η

∂t
+ [k∇T ]η+

η− · ∇(z − η) = 0 on z = η(x, t), (7)

T → Ta as z → −∞, (8)

a(t) = sup{x : h(x, t) − η(x, t) > 0}, V (t) =
∫ a(t)

x=0
h(x, t)dx, (9)

(
∂η

∂x
− ∂h

∂x

)
(a(t), t) = tan(�(t)), (10)

where ρ is the density, µ the viscosity, g the acceleration due to gravity, k = (0, 1)T , c the
specific heat capacity, k the thermal conductivity, σ the surface tension, γ the heat-transfer
coefficient, Tm the melting temperature, Lf the latent heat of fusion, V (t) the prescribed
volume per unit length, τ denotes the stress tensor of the liquid, n is the unit normal vector
pointing out of the liquid, t is the unit tangential vector, Ta is the ambient temperature and the
differential operator ∇ = (∂/∂x, ∂/∂z). The mean curvature κ is given by

2κ = ∇ · ([1 + |∇h|2]−1/2∇h
)
.

We assume the melting point is above the ambient temperature, that is Tm > Ta. We will
assume that the volume per unit length to be of the form V (t) = qtα in two dimensions
and the volume to be of the form V (t) = Qtα in the axisymmetric case, where q and Q are
constants.

Equations (1) and (2) describe the conservation of mass, momentum and energy in the
liquid, while equation (3) represents conservation of energy in the solid. The first boundary
condition in (4) and (5) are the conservation of mass and energy, while the second and third
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in (4) balance the normal and tangential stress components across the liquid/gas interface.
The boundary condition in (5) may break down near the front (when h − η is smaller than
the thickness of the thermal boundary layer in the gas), but for the purposes of this article, it
is adopted as a reasonable approximation. The first boundary condition in (6) is the melting
isotherm, the second conservation of mass and the third the no-slip condition. The issue of
whether or not basal solidification relieves the stress singularity at the front is an interesting
one. The no-slip condition is adopted until the requirement for slip has been established. Equa-
tion (7) denotes conservation of energy at the solid/liquid interface. Equation (8) describes the
ambient temperature in the body of the solidified material. The first condition in (9) defines
the front and the second relates to a global conservation of mass. Equation (10) introduces the
dynamic contact angle. We do not prescribe any contact-angle condition in this model; this
will be discussed below.

Anderson et al. [9] recently presented results concerning the contact angle in the presence
of solidification. These results concern geometrical models in which the solidified boundary
is assumed to be horizontal. Comparison between continuum models and experimental results
is required before these theories may be considered valid approximations in general. We make
no attempt to specify a contact-angle condition in this paper.

The system of Equations (1–10) is not only lacking in a contact-angle condition, but also
a boundary condition at x = 0. In the case of a non-zero inflow (that is dV/dt non-zero), it is
necessary to consider a more sophisticated model of the inflow itself. In the zero inflow case,
the line x = 0 may be considered as a line of symmetry and we require

∂w

∂x
= 0.

the axisymmetric version of this condition is obtained by replacing x by r.

2.1.2. Non-dimensionalisation
We define a0 and U to be typical values of the horizontal length-scale and velocity. A rep-
resentative value of the small aspect ratio is denoted by δ. We transform to dimensionless
variables via

x = a0x
∗, z = δa0z

∗, t = a0

U
t∗, u = Uu∗, w = δUw∗, p = µU

a0δ2
p∗, � = δ�∗,

T = Ta + (Tm − Ta)T
∗, V = a2

0δV
∗, h = δa0h

∗, η = δa0η
∗, a = a0a

∗.

Conservation of mass in the liquid determines the vertical velocity scale. We note that the
dominant flow direction is horizontal. The pressure scale is obtained by balancing pressure
gradients and viscous terms in the horizontal component of the equation for conservation
of momentum. The system of equations (1–10) then becomes (and without ambiguity the
asterisks on the non-dimensional variables can be omitted):

∂u

∂x
+ ∂w

∂z
=0, Reδ2

[
∂u

∂t
+u

∂u

∂x
+w

∂u

∂z

]
=−∂p

∂x
+δ2 ∂2u

∂x2
+ ∂2u

∂z2
for η(x, t) < z < h(x, t), (11)

Reδ4

[
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

]
= −∂p

∂z
+ δ4 ∂2w

∂x2
+ δ2 ∂2w

∂z2
− G

C
for η(x, t) < z < h(x, t), (12)

1

D

[
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

]
= δ2 ∂2T

∂x2
+ ∂2T

∂z2
for η(x, t) < z < h(x, t), (13)
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1

D

∂T

∂t
= δ2 ∂2T

∂x2
+ ∂2T

∂z2
for z < η(x, t), (14)

w= ∂h

∂t
+u

∂h

∂x
, p=− 1

C

∂2h

∂x2
+O(δ2),

∂u

∂z
=O(δ2),

∂T

∂z
+BT =O(δ2) on z=h(x, t), (15)

T = 1, w = u
∂η

∂x
, u = O(δ2), λf

∂η

∂t
+ D

[
∂T

∂z
− δ2 ∂η

∂x

∂T

∂x

]η+

η−
= 0 on z = η(x, t), (16)

T → 0 as z → −∞, (17)

a(t) = sup{x : h(x, t) − η(x, t) > 0}, V (t) =
∫ a(t)

x=0
h(x, t)dx, (18)

(
∂η

∂x
− ∂h

∂x

)
(a(t), t) = �(t) + O(δ2). (19)

A number of dimensionless parameters arise, namely the Reynolds number Re, the Bond
number G, the capillary number C, the Peclet number Pe, the Biot number B, the Stefan
number for fusion λf and the reciprocal of the reduced Peclet number D = 1/Peδ2. We
define these parameters as follows

Re = ρUa0

µ
, G = ρga2

0

σ
, C = µU

σδ3
,

Pe = ρcUa0

k
, B = a0δγ

k
, λf = Lf

c(Tm − Ta)
.

We adopt the lubrication and large-Bond-number limit based on the assumptions of small
aspect ratio squared (δ2 � 1), small modified Reynolds number (Reδ2 � 1), the large
Bond number (G � 1) and G/C = O(1). The Bond number is a ratio of gravitational
forces to surface tension. The lack of influence of the front on the overall behaviour at large
Bond numbers is well-known (see [1]), this being the régime where we shall eventually seek
solutions. We assume D = O(1), B = O(1) and λf = O(1) until otherwise indicated.

2.2. AXISYMMETRIC MODEL

The same notation for velocity, pressure, temperature and the moving boundaries will be
adopted for the axisymmetric model; these quantities are defined anew. We consider an incom-
pressible fluid contained in the radial direction by 0 < r < a(t) and in the vertical direction
by a bottom defined by z = η(r, t) and a top defined by z = h(r, t), where r and z are the
coordinates in the radial and vertical directions and t is time (as shown in Figure 1 except that
the radial coordinate r replaces x). Solidified material is present in the region z < η(r, t). The
axisymmetric version (see [10, p. 602]) of the initial-boundary-value problem (1–10) for the
radial velocity u(r, z, t), vertical velocity w(r, z, t), pressure p(r, z, t), temperature T (r, z, t),
the position of the front r = a(t), the dynamic contact angle �(t) and unknown free surfaces
z = η(r, t) and z = h(r, t) is transformed to dimensionless variables via

r = a0r
∗, z = δa0z

∗, t = a0

U
t∗, u = Uu∗, w = δUw∗, p = µU

a0δ2
p∗, � = δ�∗,
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T = Ta + (Tm − Ta)T
∗, V = 2πa3

0δV
∗, h = δa0h

∗, η = δa0η
∗, a = a0a

∗,

where a0 and U now represent typical values of the radial length-scale and velocity. The
resulting system of equations is not stated here, the leading-order axisymmetric problem is
summarised in Subsection 3.2.

3. Leading-order problem

3.1. TWO-DIMENSIONAL MODEL

3.1.1. Asymptotic analysis
Equations (1–10) are formidable both from an analytical and numerical viewpoint. If predic-
tions are to result, then a lubrication and large-Bond-number limit is desirable to make the
equations tractable. We introduce expansions of the form

u ∼ u0, w ∼ w0, p ∼ p0, T ∼ T0, a ∼ a0, η ∼ η0, h ∼ h0,

as δ2 → 0, Reδ2 → 0, 1/G → 0 and define � = G/C = O(1). Hocking [2] found
that the large-Bond-number problem split into three asymptotic regions in the absence of
solidification, namely an outer solution where gravity dominates capillarity, an intermediate
region where capillarity and gravity are of equal importance and an inner region where ca-
pillarity is dominant but slip can no longer be ignored. This analysis justifies the use of the
outer solution as a reasonable approximation to the whole solution; the approach having been
shown to produce satisfactory agreement with experiment in predicting the overall shape [1].
Henceforth, we shall adopt the outer solution accepting that the liquid/gas interface we obtain
will have an unphysical vertical gradient in the neighbourhood of the front. The analysis in [2]
also shows that this approximation becomes invalid when the time-scale of spreading is large;
the analysis which follows will be applicable while viscosity, gravity and basal solidification
remain dominant.

Integrating the equation for conservation of mass (the first equation in (11)) across the fluid
layer and using the conservation of mass boundary conditions at the liquid/gas interface (the
first in (15)) and the solid/liquid interface (the second in (16)), we obtain

∂h0

∂t
+ ∂

∂x

∫ z=h0

z=η0

u0dz = 0. (20)

The integration of the leading-order balance between pressure gradient and hydrostatic forces
in (12) and application of the normal stress boundary condition (the second in (15)) gives

p0 = �(h0 − z).

Now the second equation in (11) is integrated three times with respect to z with the tangential-
stress condition (the third in (15)) and no-slip condition (the third in (16)), to obtain∫ z=h0

z=η0

u0dz = −�

3

∂h0

∂x
(h0 − η0)

3. (21)

Equations (20) and (21) give the evolution equation for the free surface h0(x, t), that is,

∂h0

∂t
+ ∂

∂x

[
−�

3

∂h0

∂x
(h0 − η0)

3

]
= 0. (22)
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The horizontal velocity is then known in terms of the two free boundaries η0 and h0, we have

u0 = −�

2

∂h0

∂x
(z − η0)(2h0 − z − η0). (23)

By use of the first equation in (11) and the second condition in (16), the vertical velocity may
be obtained

w0 =−�

6

∂2h0

∂x2
(η0−z)2(2η0−3h0+z) − �

∂h0

∂x
(z−η0)

(
−1

2

∂h0

∂x
(z−η0)+ ∂η0

∂x
(h0−η0)

)
.

(24)

3.1.2. Summary of the two-dimensional problem δ2 � 1, Reδ2 � 1, G � 1,� = O(1)

We summarise the two-dimensional model in conservative form (which is more suitable for
numerical solution) to describe the coupling of gravity, viscosity and basal solidification. The
subscripts on the leading-order terms will be omitted without ambiguity. The leading-order
equations in the fluid are given by

∂

∂t
(h − η) + ∂

∂x

[
−�

3

∂h

∂x
(h − η)3

]
= −∂η

∂t
, (25)

∂T

∂t
+ ∂

∂x
(uT ) + ∂

∂z
(wT ) = D

∂2T

∂z2
, (26)

u = −�

2

∂h

∂x
(z − η)(2h − z − η), (27)

w=−�

6

∂2h

∂x2
(η−z)2(2η−3h + z)−�

∂h

∂x
(z − η)

(
−1

2

∂h

∂x
(z − η)+ ∂η

∂x
(h − η)

)
, (28)

at the liquid/gas interface,

on z = h
∂T

∂z
+ BT = 0, (29)

at the solid/liquid interface,

λf

∂η

∂t
+ D

[
∂T

∂z

]η+

η−
= 0, on z = η T = 1, (30)

in the solid,

∂T

∂t
= D

∂2T

∂z2
for z < η, T → 0 as z → −∞, (31)

and at the front,

a(t) = sup{x : h(x, t) − η(x, t) > 0}, V (t) =
∫ a(t)

x=0
h(x, t)dx. (32)

The initial conditions are

h(x, 0) = h̄(x), T (x, z, 0) = T̄ (x, z), η(x, 0) = 0, a(0) = ā, V (0) = V̄ , (33)



The propagation and basal solidification of two-dimensional 367

where we assume T̄ (x, z) = 0 for z < 0, T̄ (x, 0) = 1, ∂T̄ /∂z(x, h̄(x)) + BT̄ (x, h̄(x)) = 0
for x < ā, T̄ (x, z) ≥ 1 for 0 < z ≤ h̄(x), h̄(ā) = 0 and V̄ = ∫ ā

x=0 h̄(x)dx. The initial
temperature of the solid is assumed to be ambient whereas the initial temperature of the fluid
is at melting point at the solid/liquid interface, there being a discontinuous spatial derivative
at z = 0. The four physical time-scales associated with fluid spreading, thermal convection,
thermal conduction and basal solidification are given by

µ

ρgδ3a0
,

a0

U
,

ρcδ2a2
0

k
,

ρcδ2a2
0λf

k
,

respectively. The conventional form of the lubrication equation has been modified by terms
which relate to the solid/liquid interface, the term on the right-hand side of (25) representing
the loss of mass due to basal solidification. We note that (25) is a degenerate parabolic partial
differential equation. Equations (25) and (27–28) were previously obtained by Bunk [5]. This
model is closed; it has the full complement of boundary conditions.

3.2. SUMMARY OF THE AXISYMMETRIC PROBLEM: δ2 � 1, Reδ2 � 1,
G � 1,� = O(1)

The analysis in the axisymmetric case is similar to the two-dimensional case (see Subsec-
tion 3.1.1) and only the result will be outlined below. We summarise the axisymmetric model
in conservative form which describes the coupling of gravity, viscosity and basal solidific-
ation. The subscripts on the leading-order terms will be omitted without ambiguity. The
leading-order equations in the fluid are

∂

∂t
(h − η) + 1

r

∂

∂r

[
−r

�

3

∂h

∂r
(h − η)3

]
= −∂η

∂t
, (34)

∂T

∂t
+ 1

r

∂

∂r
(ruT ) + ∂

∂z
(wT ) = D

∂2T

∂z2
, (35)

u = −�

2

∂h

∂r
(z − η)(2h − z − η), (36)

w=− �

6r

∂

∂r

(
r
∂h

∂r

)
(η−z)2(2η−3h+z)−�

∂h

∂r
(z−η)

(
−1

2

∂h

∂r
(z−η)+ ∂η

∂r
(h−η)

)
, (37)

at the liquid/gas interface,

on z = h
∂T

∂z
+ BT = 0, (38)

at the solid/liquid interface,

λf

∂η

∂t
+ D

[
∂T

∂z

]η+

η−
= 0, on z = η T = 1, (39)

in the solid,

∂T

∂t
= D

∂2T

∂z2
for z < η, T → 0 as z → −∞, (40)
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and at the front

a(t) = sup{r : h(r, t) − η(r, t) > 0}, V (t) =
∫ a(t)

r=0
h(r, t)rdr. (41)

The initial conditions are

h(r, 0) = h̄(r), T (r, z, 0) = T̄ (r, z), η(r, 0) = 0, a(0) = ā, V (0) = V̄ , (42)

where we assume T̄ (r, z) = 0 for z < 0, T̄ (r, 0) = 1, ∂T̄ /∂z(r, h̄(r)) + BT̄ (r, h̄(r)) = 0 for
r < ā, T̄ (r, z) ≥ 1 for 0 < z ≤ h̄(r), h̄(ā) = 0 and V̄ = ∫ ā

r=0 h̄(r)rdr. Similar comments to
those in Subsection 3.1.2 concerning (25–33) may now be applied to (34–42).

4. Analytical solutions

4.1. THE INTERMEDIATE TIME-SCALE SIMILARITY TRANSFORMATION

4.1.1. Introduction
In the absence of basal solidification, Huppert [1] described a family of similarity solutions
for two-dimensional (axisymmetric) viscous gravity currents where the volume per unit length
is of the form V = qtα (volume is of the form V = Qtα) and α < 7/4(α < 3). The
inclusion of the basal solidification modifies the structure of the equations. In general, the
large-time motion of the front is no longer given by a(t) ∼ t (3α+1)/5 (a(t) ∼ t (3α+1)/8) for
the two-dimensional (axisymmetric) problem; the required continuous symmetry group is not
available. The front motion is complicated by basal solidification modifying the flow at leading
order (see Section 5). Two exceptional cases are described below in Subsections 4.1.2 and
4.1.3.

4.1.2. The B = 0, V ∝ t7/4, large Julian number two-dimensional problem
The V ∝ t7/4 and large-Julian-number régime corresponds to the limit where inertial effects
are insignificant in comparison to viscous effects for all time [1], where the Julian num-
ber is given by ν3g2/q4 and ν = µ/ρ is the kinematic viscosity. In the absence of basal
solidification, the energy equation decouples and the solution is self-similar with

u = t1/4u†(ζ, ξ), w = t−1/2w†(ζ, ξ), h = t1/2h†(ζ ), a = t5/4a†, V = t7/4V †,

in which ζ = x/t5/4 and ξ = z/t1/2. This similarity transformation has been reported in [1].
In this subsection we consider how to generalise this result to include basal solidification.

We consider time-scales such that the conduction length-scale is much larger than the
vertical dimension of the fluid drop. Therefore the detailed structure of the initial condition for
temperature will have smoothed under the action of conduction. The fluid layer is assumed to
be deep enough that solidification does not engulf the flow at any point. We therefore consider
an intermediate time-scale and length-scale when this nonlinear system has a self-similar
solution with

T = T †(ζ, ξ), u = t1/4u†(ζ, ξ), w = t−1/2w†(ζ, ξ), η = t1/2η†(ζ ),

h = t1/2h†(ζ ), a = t5/4a†, V = t7/4V †.

Equations (25–32) transform to
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h†

2
− 5ζ

4

dh†

dζ
− �

3

d

dζ

[
dh†

dζ
(h† − η†)3

]
= 0, (43)

−5ζ

4

∂T †

∂ζ
− ξ

2

∂T †

∂ξ
+ ∂

∂ζ
(u†T †) + ∂

∂ξ
(w†T †) = D

∂2T †

∂ξ 2
for η† < ξ < h†, (44)

u† = −�

2

dh†

dζ
(ξ − η†)(2h† − ξ − η†), (45)

w† =−�

6

d2h†

dζ 2
(η†−ξ)2(2η†−3h†+ξ)−�

dh†

dζ
(η†−ξ)

(
1

2

dh†

dζ
(η†−ξ)+ dη†

dζ
(h†−η†)

)
, (46)

λf

(
η†

2
− 5ζ

4

dη†

dζ

)
+ D

[
∂T †

∂ξ

]η†+

η†−
= 0 on ξ = η† T † = 1, (47)

−5ζ

4

∂T †

∂ζ
− ξ

2

∂T †

∂ξ
= D

∂2T †

∂ξ 2
for ξ < η†, as ξ → −∞ T † → 0, (48)

for 0 < ζ < a† and

h†(a†) = η†(a†), V † =
∫ a†

ζ=0
h†dζ. (49)

The Equations (43–46) and (49) have already been derived by Bunk [5]. Bunk did not include
latent heat or heat conduction in the solid, so Equations (47–48) are introduced here. The front
has the same time dependence with basal solidification as it does without [1]. The effect of
solidification is to modify the system of equations satisfied by the constant of proportionality
a†. We anticipate that a† will be smaller with basal solidification than without. However, it
does not appear possible to deduce this result analytically from (43–49).

4.1.3. The B = 0, V ∝ t3, νg/Q � 1 axisymmetric problem
This régime corresponds to the limit where inertial effects are insignificant in comparison to
viscous effects for all time in the axisymmetric case [1]. In the absence of basal solidification,
a self-similar solution

u = t1/4u‡(ζ, ξ), w = t−1/2w‡(ζ, ξ), h = t1/2h‡(ζ ), a = t5/4a‡, V = t3V ‡,

where ζ = r/t5/4 and ζz = z/t1/2 has been reported in [1]. We consider an intermediate
time-scale and length-scale, as argued in Subsection 4.1.2, when the solution of the nonlinear
system (34–41) has a self-similar solution with

T = T ‡(ζ, ξ), u = t1/4u‡(ζ, ξ), w = t−1/2w‡(ζ, ξ), η = t1/2η‡(ζ ),

h = t1/2h‡(ζ ), a = t5/4a‡, V = t3V ‡.

Equations (34–41) transform to a similar system to (43–49). We observe, as in Subsection 4.1.2,
that the front has the same time dependence with basal solidification as it does without.
The effect of solidification is to modify the system of equations satisfied by the constant of
proportionality a‡.
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4.2. THE B = 0,D � 1 AND λf = O(D1/2) TWO-DIMENSIONAL (AXISYMMETRIC)
PROBLEM

We consider the liquid/gas interface to be adiabatic (B = 0), small modified Peclet number
(D � 1) and large latent heat of fusion (λf = O(D1/2)). We note that if we had adopted
λf = O(1) the liquid would solidify without any significant spreading. Therefore, we take
the latent heat of fusion to be large in comparison to sensible heat. In the following we also
assume Dδ2 � 1 so that the lateral thermal conduction terms remain negligible. The two-
dimensional model (25–32) and the axisymmetric model (34–41) are singularly perturbed in
the small parameter 1/D, there being an initial inner expansion for t = O(1/D). A similar
limit was previously adopted in [3] (see the Appendix) and [11], however, the inner expansion
was not considered.

4.2.1. Inner expansion: t = O(1/D)

In this inner expansion the appropriate scalings are (with no ambiguity with the earlier deriv-
ation of the lubrication and large-Bond-number limit)

t = t1/D, T ∼ T0, η ∼ 1

λf

η0, h ∼ h̄,

as 1/λf → 0 and 1/D → 0 corresponding to a rapid change in temperature and small changes
in the moving boundaries. The leading-order temperature in the fluid is given by

T0 = 1 +
∞∑

n=0

An exp

(
−(2n + 1)2π2t1

4h̄2

)
sin

(
(2n + 1)πz

2h̄

)
,

where the coefficients An(x)(An(r) in the axisymmetric case) are obtained from the initial
conditions

An = 2

h̄

∫ h̄

z=0

(
T̄ − 1

)
sin

(
(2n + 1)πz

2h̄

)
dz.

The thermal problem in the solid is self-similar with solution

T0 = 1 + erf

(
z

2t
1/2
1

)
.

The position of the solid/liquid interface may now be deduced from the first equation in (30)
(the first equation in (39) for the axisymmetric case)

η0 = 2

√
t1

π
+

∞∑
n=0

2h̄An

(2n + 1)π

[
exp

(
−(2n + 1)2π2t1

4h̄2

)
− 1

]
.

The derivative ∂η0/∂t1 is singular at t1 = 0, but there is no new balance in the equations and
no additional expansion is required.

4.2.2. Outer expansion: t = O(1)

The leading-order temperature in the fluid has now reached a pseudo steady state, but the mov-
ing boundaries now vary at leading order. Here we require D1/2/λf = ϒ = O(1) to achieve
order one variation in the solidification. The appropriate scalings are (with no ambiguity with
the earlier derivation of the lubrication and large-Bond-number limit)



The propagation and basal solidification of two-dimensional 371

T ∼ T0, η ∼ η0, h ∼ h0, a ∼ a0,

as 1/λf → 0 and 1/D → 0. The temperature in the fluid is at the melting point T0 = 1
whereas in the solid it is necessary to rescale z = D1/2y to retain the leading-order balance,
we have

T0 = 1 + erf
( y

2t1/2

)
. (50)

The solid/liquid interface is determined by the removal of heat generated by the phase change.
The temperature gradients have become much smaller on this longer time-scale. We integrate
the first equation in (30) (the first equation in (39) for the axisymmetric case) and match with
the inner expansion to obtain

η0(x, t) = 2ϒ

√
t

π

(
η0(r, t) = 2ϒ

√
t

π

)
, (51)

where x < ā(r < ā) and η0 < h0. The solidification is initiated at a time t̂ when the front
first reaches a location, t̂ (x)(t̂ (r)) being the solution of the equation x = a0(t̂ )(r = a0(t̂ )). If
ā < x < a0(ā < r < a0), then

η0(x, t) = 2ϒ

√
t − t̂

π


η0(r, t) = 2ϒ

√
t − t̂

π


 , (52)

where t > t̂ .
The liquid/gas interface must be obtained numerically. The procedure on each time-step

is now outlined. The leading-order balance in the nonlinear partial differential equation (25)
((34) in the axisymmetric case) is solved with a conventional numerical technique subject to
the conditions (32) ((41) in the axisymmetric case) to obtain the liquid/gas interface and the
function a0(t). The function t̂ (x)(t̂ (r)) is then updated. Finally, the solid/liquid interface is
evaluated using the equations (51) and (52).

The analysis in this subsection is illustrated by considering an example of the spreading of
water on ice in Section 5.

4.3. THE V (t) = V̄ AND D � 1 PROBLEM

4.3.1. Two-dimensional model
Inner expansion: t = O(1). We now consider the situation with constant volume per unit
length (V (t) = V̄ ) and large modified Peclet number (D � 1). The model is singularly
perturbed in the small parameter D. In this case the solidified material has no effect on the
leading-order problem for the fluid flow. However, the fluid flow affects the solidification
through the front position. This allows well-known similarity solutions to be combined to
form an analytical solution. We introduce expansions of the form

h ∼ h0, T ∼ T0, u ∼ u0, w ∼ w0, η ∼ D1/2η0, a ∼ a0,

as D → 0.
We note that the above scalings represent the outer expansion in a singular perturbation in

space. The inner region in the neighbourhood of the front corresponds to the scalings
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h ∼ D1/2h0, T ∼ T0, u ∼ D3/4u0, w ∼ D1/2w0,

η ∼ D1/2η0, a ∼ a0, z = D1/2Z, x = a0(t) + D3/4X.

We will ignore this region, just as in the large-Bond-number limit, assuming that this corres-
ponds to an O(D3/4) error in the location of the front and the outer expansion is a reasonable
approximation to the solution except in the neighbourhood of the front.

The leading-order liquid/gas interface satisfies the equation

∂h0

∂t
+ ∂

∂x

[
−�

3
h3

0

∂h0

∂x

]
= 0,

with boundary condition h0(a0(t), t) = 0 and
∫ a0(t)

0 h0(x, t)dx = V̄ . This is the simplest case
of the two-dimensional problem studied in [1]. The solution is of the form

h0 = â2/3

(
3V̄ 2

�

)1/5

t−1/5φ

(
ξ

â

)
, ξ =

(
1

3
�V̄ 3

)−1/5

xt−1/5,

where â is the value of ξ at x = a0(t). We obtain the Barenblatt-Pattle solution

φ(y) =
(

3

10

)1/3

(1 − y2)1/3, y = ξ

â
, â =

[
1

5

(
3

10

)1/3
π1/2�(1/3)

�(5/6)

]−3/5

.

The leading-order velocities are now given by substitution of this expression for h0 in (27)
and (28). The leading-order temperature in the fluid is determined by the hyperbolic equation

∂T0

∂t
+ u0

∂T0

∂x
+ w0

∂T0

∂z
= 0,

such that T0 is constant along the bicharacteristics dx/dt = u0 and dz/dt = w0. There is no
boundary layer at z = 0 or z = h0 in the fluid despite the removal of the highest derivative
in the leading-order problem. (We note that if we had taken B � 1 then there would have
been a thermal boundary layer at z = h. A new moving boundary must be incorporated to
model any solidification in the form of a carapace.) In the solid there is an outer expansion
and an inner expansion near z = η. The outer expansion in space is T0 ≡ 0. We perform
the stretching transformation z = D1/2Z in the boundary layer adjacent to the solid/liquid
interface, to obtain the leading-order problem

∂T0

∂t
= ∂2T0

∂Z2
,

with the boundary conditions

λf

∂η0

∂t
= ∂T0

∂Z
(x, η−

0 , t), T0(x, η0, t) = 1, T0 → 0 as Z → −∞,

for t > t̂ and the initial condition

T0(x, Z, t̂ ) = 0,

where t̂ = 3(x/â)5/(�V̄ 3). We thus obtain the Neumann solution
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T0 = 1

1 + erf(η̂/2)

(
1 + erf

(
Z

2
√

t − t̂

))
, η0 = η̂

√
t − t̂ , (53)

for t > t̂ where η̂, is the unique root of the transcendental equation

λf

√
πη̂ exp

(
η̂2

4

)(
1 + erf

(
η̂

2

))
= 2. (54)

The temperature in the fluid does not influence the leading-order term for solidification due to
the absence of large temperature gradients. We note that the time derivative of the solidified
boundary η0 becomes singular as t → 0+, but this does not produce a new leading-order bal-
ance and there is no requirement for an additional inner time layer. This solution on t = O(1)

is an inner solution which breaks down on the longer time-scale t = O(D−5/7).

Outer expansion: t = O(D−5/7). On this time-scale, the basal solidification will engulf the
flow. A number of variables need to be rescaled in this outer region, that is

t = D−5/7t̃ , x = D−1/7x̃, z = D1/7z̃, u = D4/7ũ,

w = D6/7w̃, a = D−1/7ã, h = D1/7h̃, η = D1/7η̃.

The leading-order problem on this longer time-scale corresponds to a complete balance and
no further analytical progress is possible. We note that for a two-dimensional drop of constant
volume per unit length and poor conductivity, the final thickness of the resolidified material is
O(D1/7) spread over a region O(D−1/7).

Bunk [5] concludes that latent heat release is of minor importance for large Prandtl number
melts (or equivalently large Peclet number melts if Re = O(1)). This is true on the short time-
scale because the solidification is small in comparison to the fluid depth. Latent heat is playing
a minor role. However, he did not consider this long time-scale in which the fluid depth and
solidification are of the same order. Here latent heat is present in the leading-order problem
and plays a major role in controlling the fluid flow.

4.3.2. Axisymmetric model
Inner expansion: t = O(1). The analysis is similar to the two-dimensional case and only the
solution is summarised below. We introduce expansions of the form

h ∼ h0, T ∼ T0, u ∼ u0, w ∼ w0, η ∼ D1/2η0, a ∼ a0

as D → 0. The solution is of the form

h0 = â2/3

(
3V̄

�

)1/4

t−1/4ψ

(
ξ

â

)
, ξ =

(
1

3
�V̄ 3

)−1/8

rt−1/8, (55)

where â is the value of ξ at x = a0(t). We obtain the Barenblatt-Pattle solution

ψ(y) =
(

3

16

)1/3

(1 − y2)1/3, y = ξ

â
, â =

[
213

34

]1/8

.

The leading-order velocities are now given by substitution of this expression for h0 in (36)
and (37). The leading-order temperature in the fluid is determined by the hyperbolic equation

∂T0

∂t
+ u0

∂T0

∂r
+ w0

∂T0

∂z
= 0,
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such that T0 is constant along the bicharacteristics dr/dt = u0 and dz/dt = w0. In the solid
there is an outer expansion and an inner expansion near z = η. The outer expansion is T0 ≡ 0

and for the inner expansion, we recover (53–54) except that t̂ = 3(r/â)8/(�V
3
).

Outer expansion: t = O(D−2/3). On this time-scale, the basal solidification will engulf the
flow. A number of variables need to be rescaled in this outer region, that is

t = D−2/3t̃ , r = D−1/12r̃, z = D1/6z̃, u = D7/12ũ,

w = D5/6w̃, a = D−1/12ã, h = D1/6h̃, η = D1/6η̃.

We note that for an axisymmetric drop of constant volume and poor conductivity, the final
thickness of the resolidified material is O(D1/6) spread over a region O(D−1/12).

The analysis in this subsection is illustrated by considering an example of the spreading of
liquid glycerol on solid glycerol in Section 5.

5. Results

5.1. SOLIDIFICATION OF WATER

We now consider the spreading and basal solidification of an axisymmetric drop of water on
a horizontal plane of ice. If we take the physical properties of water to be

ρ ∼ 103 kgm−3, c ∼ 4 × 103 Jkg−1 K−1, k ∼ 0·6 Js−1 m−1 K−1,

σ ∼ 8 × 10−2 Nm−1, µ ∼ 10−3 Nm−2 s, Lf ∼ 3 × 105 Jkg−1, Tm ∼ 273 K,

(see, for example, [12]) along with the scales of the initial conditions

a0 ∼ 10−1 m, U ∼ 10−3 ms−1, δ ∼ 10−2, Tm − Ta ∼ 10 K,

then we obtain

Reδ2 ∼ 10−2, C ∼ 10, G ∼ 103, Pe ∼ 103, D ∼ 10, λf ∼ 10.

These dimensionless constants are consistent with the assumptions adopted in Subsection 4.2.
We note that, even though � ∼ 102, it does not change the leading-order balance. The analysis
of Subsection 4.2 will now be applied.

The evolution of the liquid/gas and solid/liquid interfaces of an axisymmetric drop is shown
in Figure 2. The initial condition is taken to be consistent with the Barenblatt-Pattle solu-
tion (Subsection 4.3) and the free surfaces are compared with the Barenblatt-Pattle solution
without solidification at subsequent times. The front is significantly retarded by the basal
solidification. There is a critical time at which the radial spreading is arrested completely
(shown in Figure 3). The instantaneous streamlines shown in Figure 4 correspond to the
liquid/gas and solid/liquid interfaces in Figure 2. The velocity is decreasing rapidly in the
time interval from t = 0·1 to t = 0·2. At t = 0·2, the velocities are sufficiently small to
be at the limit of permitted velocities for the current parameter régime. Comparison of the
instantaneous streamlines at t = 0·1 and 0·2 with and without solidification (as shown m
Figure 5) clearly indicate the retarding of the flow by solidification. The loss of kinetic energy
in the flow is due to the elevation of the effective zero in potential energy as the ice forms.
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Figure 4. Instantaneous streamlines for the spreading
and solidification of an axisymmetric drop of water
with B = 0, D � 1 and λf = O(D1/2) at times t =
0 (top), t = 0·1 (middle) and t = 0·2 (bottom). The
solid/liquid interface corresponds to the zero isoline
of the stream function. The streamlines are calculated
using the leading-order balance in (36–37).

Figure 5. Instantaneous streamlines for the spreading
of an axisymmetric drop of water without solidifica-
tion at times t = 0·1 (top) and t = 0·2 (bottom). The
solid/liquid interface (z = 0) corresponds to the zero
isoline of the stream function. The streamlines are
calculated using the leading-order balance in (36–37).

Figure 6. Propagation and solidification of an axisym-
mentric drop of water with B = 0,D � 1 and
λf = O(D1/2) at time t = 0·2. Dimensionless tem-
perature contours (using (50)) are shown alongside the
solid/liquid and liquid/gas interfaces.

We do not specify the initial temperature distribution in the liquid. The rapid thermal con-
duction decreases the temperature in the liquid to the melting point on a short time-scale (see
the inner expansion in Subsection 4.2). The temperature in the solid adopts an error function
profile on this short time-scale. This temperature distribution matches into another slowly
varying error function distribution on the long thermal time-scale (see the outer expansion in
Subsection 4.2). Therefore, the heat flux into the substrate is significantly decreased on this
long time-scale. The temperature contours at t = 0·2 are shown in Figure 6. The thermal
boundary layer is very thin near the front and grows as radius decreases. We note that the heat
flux varies as a function of radius and time, taking its maximum value in the neighbourhood of
the front. The use of a heat-transfer coefficient to model this flux would clearly be incorrect.
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Figure 7. Basal solidification of an axisymmetric glycerol drop for the V (t) = V̄ and D � 1 problem. The
liquid/gas interface (top) corresponds to the solid/liquid interface (bottom). The interfaces are computed from
(53–54) with t̂ = 3(r/â)8/(�V̄ 3) and (55).

5.2. SOLIDIFICATION OF GLYCEROL

Our next example concerns the initial stages of the solidification of a glycerol drop spreading
over a horizontal plane of solid glycerol. If we take the physical properties of glycerol to be

ρ ∼ 103 kgm−3, c ∼ 2 × 103 Jkg−1 K−1, k ∼ 0·3 Js−1 m1 K−1,

σ ∼ 6 × 10−2 Nm−1, µ ∼ 1 Nm−2 s, Lf ∼ 2 × 105 Jkg−1, Tm ∼ 291 K,

(see, for example, [12, [13, pp. 15–16]) along with the scales of the initial conditions

a0 ∼ 10−1 m, U ∼ 10−2 ms−1, δ ∼ 10−1, Tm − Ta ∼ 50 K,

then we obtain

Reδ2 ∼ 10−2, C ∼ 102, G ∼ 103, Pe ∼ 104, D ∼ 10−2, λf ∼ 2.

These dimensionless constants fall into the parameter régime studied in Subsection 4.3.2.
The basal solidification of an axisymmetric drop at different times is shown in Figure 7. The
drop initially lies in the interval 0 ≤ r ≤ 1·16 and the solidification is independent of the
radial coordinate r in this region. The coupling to the flow is through the location of the front
which initiates the solidification at r > 1·16 as it passes. Therefore, the front motion predicts
the shape of the solid/liquid interface on this time-scale.

The rate of spreading is slowing significantly as time progresses in Figure 7. Our analysis
predicts the final thickness of the solidified glycerol is of the order of D1/6 ∼ 10−1/3 ≈ 0·5
spread over a region of the order of D−1/12 ∼ 101/6 ≈ 2 on a long time-scale of the order of
D−2/3 ∼ 104/3 ≈ 20. This forecast compares reasonably with the initial stages of spreading
in Figure 7.
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6. Conclusions

New two-dimensional and axisymmetric continuum models have been derived to describe
the effect of basal solidification on viscous gravity currents. Our first model incorporates a
Stefan formulation for the basal solidification into the Navier-Stokes equations. After non-
dimensionalisation, the Navier-Stokes equations are reduced in the lubrication and large-
Bond-number limit. The coupling of gravity, viscosity and basal solidification is described
by this second model. We note that both models contain two coupled moving boundaries.

In general, numerical methods are required to solve our system of equations. It is a non-
trivial matter to obtain numerical solutions to coupled moving-boundary problems. However,
analytical solutions may be obtained to the second model in three special cases:
(i) A similarity transformation may be obtained at zero Biot number in two cases. The two-

dimensional problem when volume per unit length grows as time raised to the power
7/4 and the Julian number is large. The axisymmetric problem when volume grows as
time raised to the power 3 and the dimensionless group νg/Q is large. In both cases, the
location of the front is proportional to time raised to the power 5/4, which is the same time
dependence as without solidification. However, the constant of proportionality satisfies a
modified system of equations; we anticipate that the front motion would be slower.

(ii) The parameter régime given by zero Biot number, large Stefan number and small modi-
fied Peclet number corresponds to leading-order coupling. Analytical progress is possible
because the temperature of the fluid approaches the melting temperature over a short
time-scale. The solid/liquid interface is then determined from the rate at which the latent
heat is conducted into the solid over the long time-scale. Comparison of the spreading of
a water drop with and without basal solidification indicates that the front is retarded by
solidification. Indeed, the most dramatic result in this paper is that the front is arrested
long before complete phase change has taken place (cf. [4] at small Bond number).
The basal solidification is responsible for arresting the front motion, the solidification
time-scale being shorter than the spreading time-scale in the neighbourhood of the front.
The flow is also profoundly modified in magnitude and direction by the motion of the
solid/liquid interface.

(iii) The parameter régime given by constant volume and large modified Peclet number cor-
responds to a weak coupling. The solidification depends on the fluid flow through the
front position on the short time-scale, but the solidification does not modify the fluid
motion at leading order. Over the long time-scale, the entire fluid volume solidifies.
Although it is not possible to determine analytical solutions on this time-scale, scal-
ings may be deduced. The final thickness of the solidified material is of the order of
aoPe−1/7δ5/7 spread over a distance a0Pe1/7δ2/7 for the two-dimensional problem and the
final thickness of the order of a0Pe−1/6δ2/3 spread over a radial distance a0Pe1/12δ1/6 for
the axisymmetric problem.

These solutions, in restrictive parameter régimes, provide valuable insight and may be used as
a benchmark for future numerical studies.

We conclude by noting the importance of experiments to validate the models in this paper.
The underlying assumption in the second model is that neglecting the boundary layer at the
front and considering the outer expansion in the large-Bond-Number limit is a valid approxim-
ation. This assumption can only be verified by comparison with experiments. It would also be
interesting to compare experimentally the constant of proportionality in the time dependence
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of the front in solution (i) with and without solidification. Experiments are also necessary to
examine the arresting of the fluid motion before complete phase change has taken place.
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